Extensions 1→N→G→Q→1 with N=C23 and Q=C2×C4

Direct product G=N×Q with N=C23 and Q=C2×C4
dρLabelID
C24×C464C2^4xC464,260

Semidirect products G=N:Q with N=C23 and Q=C2×C4
extensionφ:Q→Aut NdρLabelID
C231(C2×C4) = C2×C23⋊C4φ: C2×C4/C2C4 ⊆ Aut C2316C2^3:1(C2xC4)64,90
C232(C2×C4) = C23.23D4φ: C2×C4/C2C22 ⊆ Aut C2332C2^3:2(C2xC4)64,67
C233(C2×C4) = C22.11C24φ: C2×C4/C2C22 ⊆ Aut C2316C2^3:3(C2xC4)64,199
C234(C2×C4) = C2×C4×D4φ: C2×C4/C4C2 ⊆ Aut C2332C2^3:4(C2xC4)64,196
C235(C2×C4) = C22×C22⋊C4φ: C2×C4/C22C2 ⊆ Aut C2332C2^3:5(C2xC4)64,193

Non-split extensions G=N.Q with N=C23 and Q=C2×C4
extensionφ:Q→Aut NdρLabelID
C23.1(C2×C4) = C2≀C4φ: C2×C4/C2C4 ⊆ Aut C2384+C2^3.1(C2xC4)64,32
C23.2(C2×C4) = C23.D4φ: C2×C4/C2C4 ⊆ Aut C23164C2^3.2(C2xC4)64,33
C23.3(C2×C4) = C23.C23φ: C2×C4/C2C4 ⊆ Aut C23164C2^3.3(C2xC4)64,91
C23.4(C2×C4) = C2×C4.D4φ: C2×C4/C2C4 ⊆ Aut C2316C2^3.4(C2xC4)64,92
C23.5(C2×C4) = C23.9D4φ: C2×C4/C2C22 ⊆ Aut C2316C2^3.5(C2xC4)64,23
C23.6(C2×C4) = M4(2)⋊4C4φ: C2×C4/C2C22 ⊆ Aut C23164C2^3.6(C2xC4)64,25
C23.7(C2×C4) = C24.C22φ: C2×C4/C2C22 ⊆ Aut C2332C2^3.7(C2xC4)64,69
C23.8(C2×C4) = C24.3C22φ: C2×C4/C2C22 ⊆ Aut C2332C2^3.8(C2xC4)64,71
C23.9(C2×C4) = M4(2).8C22φ: C2×C4/C2C22 ⊆ Aut C23164C2^3.9(C2xC4)64,94
C23.10(C2×C4) = C42.7C22φ: C2×C4/C2C22 ⊆ Aut C2332C2^3.10(C2xC4)64,114
C23.11(C2×C4) = C89D4φ: C2×C4/C2C22 ⊆ Aut C2332C2^3.11(C2xC4)64,116
C23.12(C2×C4) = C86D4φ: C2×C4/C2C22 ⊆ Aut C2332C2^3.12(C2xC4)64,117
C23.13(C2×C4) = Q8○M4(2)φ: C2×C4/C2C22 ⊆ Aut C23164C2^3.13(C2xC4)64,249
C23.14(C2×C4) = C23.8Q8φ: C2×C4/C4C2 ⊆ Aut C2332C2^3.14(C2xC4)64,66
C23.15(C2×C4) = C82M4(2)φ: C2×C4/C4C2 ⊆ Aut C2332C2^3.15(C2xC4)64,86
C23.16(C2×C4) = (C22×C8)⋊C2φ: C2×C4/C4C2 ⊆ Aut C2332C2^3.16(C2xC4)64,89
C23.17(C2×C4) = C42.6C22φ: C2×C4/C4C2 ⊆ Aut C2332C2^3.17(C2xC4)64,105
C23.18(C2×C4) = C8×D4φ: C2×C4/C4C2 ⊆ Aut C2332C2^3.18(C2xC4)64,115
C23.19(C2×C4) = C2×C8○D4φ: C2×C4/C4C2 ⊆ Aut C2332C2^3.19(C2xC4)64,248
C23.20(C2×C4) = C23⋊C8φ: C2×C4/C22C2 ⊆ Aut C2316C2^3.20(C2xC4)64,4
C23.21(C2×C4) = C22.M4(2)φ: C2×C4/C22C2 ⊆ Aut C2332C2^3.21(C2xC4)64,5
C23.22(C2×C4) = C22.C42φ: C2×C4/C22C2 ⊆ Aut C2332C2^3.22(C2xC4)64,24
C23.23(C2×C4) = C4×C22⋊C4φ: C2×C4/C22C2 ⊆ Aut C2332C2^3.23(C2xC4)64,58
C23.24(C2×C4) = C243C4φ: C2×C4/C22C2 ⊆ Aut C2316C2^3.24(C2xC4)64,60
C23.25(C2×C4) = C23.7Q8φ: C2×C4/C22C2 ⊆ Aut C2332C2^3.25(C2xC4)64,61
C23.26(C2×C4) = C23.34D4φ: C2×C4/C22C2 ⊆ Aut C2332C2^3.26(C2xC4)64,62
C23.27(C2×C4) = C4×M4(2)φ: C2×C4/C22C2 ⊆ Aut C2332C2^3.27(C2xC4)64,85
C23.28(C2×C4) = C2×C22⋊C8φ: C2×C4/C22C2 ⊆ Aut C2332C2^3.28(C2xC4)64,87
C23.29(C2×C4) = C24.4C4φ: C2×C4/C22C2 ⊆ Aut C2316C2^3.29(C2xC4)64,88
C23.30(C2×C4) = C2×C4.10D4φ: C2×C4/C22C2 ⊆ Aut C2332C2^3.30(C2xC4)64,93
C23.31(C2×C4) = C4⋊M4(2)φ: C2×C4/C22C2 ⊆ Aut C2332C2^3.31(C2xC4)64,104
C23.32(C2×C4) = C42.12C4φ: C2×C4/C22C2 ⊆ Aut C2332C2^3.32(C2xC4)64,112
C23.33(C2×C4) = C42.6C4φ: C2×C4/C22C2 ⊆ Aut C2332C2^3.33(C2xC4)64,113
C23.34(C2×C4) = C2×C42⋊C2φ: C2×C4/C22C2 ⊆ Aut C2332C2^3.34(C2xC4)64,195
C23.35(C2×C4) = C22×M4(2)φ: C2×C4/C22C2 ⊆ Aut C2332C2^3.35(C2xC4)64,247
C23.36(C2×C4) = C22.7C42central extension (φ=1)64C2^3.36(C2xC4)64,17
C23.37(C2×C4) = C2×C2.C42central extension (φ=1)64C2^3.37(C2xC4)64,56
C23.38(C2×C4) = C2×C8⋊C4central extension (φ=1)64C2^3.38(C2xC4)64,84
C23.39(C2×C4) = C2×C4⋊C8central extension (φ=1)64C2^3.39(C2xC4)64,103
C23.40(C2×C4) = C22×C4⋊C4central extension (φ=1)64C2^3.40(C2xC4)64,194

׿
×
𝔽